

Testimony

Topics

	What is Testimony?

	Advantages

	Test Case Docstring format

	Sample Test Case

	How it works?

	Installation

	Usage Examples

	help command

	print command

	summary command

	validate command

	Misc Options

	Tokens configuration

	Project Contribution

	How to Contribute?

	Author

	Contributors

	Appendix

	Python Test Modules

	Python Test case functions

What is Testimony?

Testimony is an approach to document test cases in the Python source code using
the function docstrings.

If your answer is yes to both the questions below, then Testimony is the
right tool for you.

	Are you using python to automate your test cases?

	Are you tired of managing your test cases in a test case management tool?

Don’t worry. Testimony can help you to use your Python automation framework as
a test case repository tool.

Advantages

Using Testimony brings lot of advantages to your project:

	Avoid using a test case management tool to document test cases by leveraging
function docstrings for the same.

	Enforce standards for your test case docstrings.

	Run with CI tools like Travis to validate your code after every check-in.

	Save a lot of time from the conventional way of writing test cases using a
test management tool.

	Easily extract test case information using Testimony and port it to any test
management tool.

Test Case Docstring format

Testimony allows you to easily configure Testimony tokens which are the
defined docstring items which will be used in test case parsing.

	tokens

	Allowed values to be used as docstring items in your tests. Default tokens
are assert, bz, feature, setup, status, steps,
tags, test and type.

	minimum-tokens

	minimum set of tokens that are needed for each of your tests. Default
minimum tokens are assert, feature and test.

Note

To help test case parsing, make sure that each test case docstring has the
tokens in the following format :token:. Also token matching is case
insensitive.

Sample Test Case

A sample python test case with test case tokens is shown below:

def test_login_1(self):
 """Check if a user is able to login with valid userid and password

 More description for the test.

 :feature: Login
 :setup: Navigate to abc.com
 :steps:
 1. Launch the url
 2. Log in with valid user credentials
 :assert: Log in successful
 :bz: 1234567
 :automated: false
 """

In the above example, as you may guess - feature, setup, steps,
assert, bz, automated are all tokens.

How it works?

To understand how Testimony works, let’s look at the help command:

$ testimony --help
 Usage: testimony [OPTIONS] REPORT [PATH]...

 Inspect and report on the Python test cases.

 Options:
 -j, --json JSON output
 -n, --nocolor Color output
 --tokens TEXT Comma separated list of expected tokens
 --minimum-tokens TEXT Comma separated list of minimum expected tokens
 -c, --config FILENAME Configuration file (YAML)
 --help Show this message and exit.

Testimony does the following to parse the test case docstrings:

	It captures all Python Test modules in the path(s) provided by the
PATH argument.

	As the definition implies, PATH accepts more than one value.

	If PATH is a directory, then the directory and its subdirectories
will be inspected for test modules as well.

	Inside each identified test module, it looks for Python Test case
functions

	It then parses the function docstrings and extracts their tokens. Also, it
creates namespaces for module and class level docstrings which will
then be reused in the children tests. For example, if a module has a
token called feature, then all tests in that module will inherit it by
default. But the individual tests can choose to override this value by
defining their own. The token lookup will happen in the following order and
it will stop on the very first match:

	function level

	class level

	module level

Installation

You can install Testimony from PyPI [https://pypi.python.org/pypi/testimony]
using pip:

pip install testimony

Usage Examples

Note

For easy understanding of Testimony, this repository is already included with
a sample python test module tests/test_sample.py. This module contains
different test case format examples. The sample commands used below also use
this data.

help command

See the How it works? section.

print command

Prints a nice summary of all captured tests with the parsed tokens for each
test. Also it prints non-recognized tokens.

$ testimony print tests | head -n 27

tests/test_sample.py
====================

test_outside_class:8

Assert:
 Testimony works with test functions

Feature:
 Test functions

Setup:
 Global setup

Test:
 Test testimony works with test functions.

Testsample1::test_positive_login_1:27

Assert:
 Login is successful

Setup:
 Setup Testsample1

Note

The print command above uses the head command to show just one test
case. Try without head command to see the entire output.

summary command

Gives a bird’s-eye view of all the test cases in the given path. The report
includes information such as:

	total number of test cases.

	number of test cases missing docstring.

	usage of different tokens across the given project.

For example:

$ testimony summary tests/

Total number of tests: 7
Test cases with no docstrings: 1 (14.29%)
Assert: 5 (71.43%)
Bz: 2 (28.57%)
Feature: 4 (57.14%)
Setup: 6 (85.71%)
Status: 3 (42.86%)
Steps: 6 (85.71%)
Tags: 4 (57.14%)
Test: 6 (85.71%)
Type: 1 (14.29%)

validate command

Validates all the test cases in the given path. This command gives the
required information which will help you identify the issues pertaining
to each identified tests. Checks performed for each test are:

	docstring exists

	docstring can be parsed

	all required tokens are defined

	there are no tokens outside of expected tokens range

	all tokens have valid values (see Tokens configuration)

Note

To make easier integration with CI tools like travis, this command
gives a non-zero return code if any of the checks above fails.

For example:

$ testimony validate tests/

tests/test_sample.py
====================

Testsample1::test_positive_login_1:27

* Docstring should have at least assert, feature, test token(s)
* Unexpected tokens:
 Bug: 123456
 Feture: Login - Positive
 Statues: Manual
 Types: Functional

Testsample1::test_positive_login_2:49

* Missing docstring.
* Docstring should have at least assert, feature, test token(s)

Testsample1::test_negative_login_5:87

* Docstring should have at least assert, feature, test token(s)

RSTFormattingTestCase::test_invalid_list_style:150
--

* Docstring has RST parsing issues. RST parser messages:

 * Enumerated list ends without a blank line; unexpected unindent.

 :Steps:
 1. Have a RST list on any of the tokens, like steps.
 > 2. Make sure one of the items on the list goes across multiple
 lines and the lines are not properly indented.

ConfigurationFileTestCase::test_multiple_invalid_keys:202

* Unexpected tokens:
Caseimportance: Lowest

Total number of tests: 14
Total number of invalid docstrings: 5 (35.71%)
Test cases with no docstrings: 1 (7.14%)
Test cases missing minimal docstrings: 3 (21.43%)
Test cases with unexpected tags: 2 (14.29%)
Test cases with unexpected token values in docstrings: 0 (0.00%)
Test cases with unparseable docstrings: 1 (7.14%)

Misc Options

	--json

	A json output is provided when this option is specified.

	--no-color

	a colored output is provided by default when the termcolor package is
installed. This can be disabled by specifying this option.

Tokens configuration

Tokens supported by Testimony can be configured with --tokens,
--minimum-tokens and --config options.

--tokens takes comma-separated list of supported tokens. When testimony
encounters token outside of this range, it will report it as error.

--minimum-token takes comma-separated list of required tokens. When
testimony encounters test without all of tokens in this group, it will
report it as error. Tokens specified here are automatically added to
list of supported tokens (there is no need to specify single token
in both --minimum-tokens and --tokens).

--config is path to YAML configuration file. YAML file should contain
single map (equivalent of Python dict), where keys are names of tokens
and values are maps consisting of required, type and other,
type-dependant keys. Sample config files are provided in tests
directory, as well as printed below:

Assert:
 required: True # 'Assert' is required in each test
Feature:
 required: True
Test:
 required: True
You can specify that token is not required explicitly, or leave it
out - testimony will assume default value of 'False'
Both tokens below are allowe, but not required
BZ:
 required: False
Setup: {}

If 'type' is 'choice', 'choices' must be provided and must contain
list of allowed values. 'casesensitive' declares if choices match
should be done in case-sensitive way (default) or not
Status:
 required: False
 type: choice
 casesensitive: False
 choices:
 - manual
 - automated
Steps: {}
Tags: {}
Type:
 required: False

Project Contribution

How to Contribute?

	Fork the repository on GitHub and make your changes

	Test your changes

	Send a pull request

	Watch for the Travis update on the PR as it runs flake8

	The PR will be merged after 2 ACKs

Author

This software is developed by Suresh Thirugn [https://github.com/sthirugn/]

Contributors

Og Maciel [https://github.com/omaciel/]

Corey Welton [https://github.com/cswiii/]

Elyézer Rezende [https://github.com/elyezer/]

Appendix

Python Test Modules

All files which match the patterns test_*.py and *_test.py are
considered Python test modules.

Python Test case functions

Python functions whose names start with test_

Index

 nav.xhtml

 Table of Contents

 		
 Testimony

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

